Mladen Bestvina (American Mathematician) Wiki, Biography, Age, Wife, Family, Net Worth

Mladen Bestvina Wiki,Biography, Net Worth

Mladen Bestvina is a Croatian-American mathematician working in the area of geometric group theory. He is a Distinguished Professor in the Department of Mathematics at the University of Utah.

Explore Mladen Bestvina Wiki Age, Height, Biography as Wikipedia, Wife, Family relation. There is no question Mladen Bestvina is the most famous & most loved celebrity of all the time. You can find out how much net worth Mladen has this year and how he spent his expenses. Also find out how he got rich at the age of 61. He has a pure loving kind heart personality. Scroll Down and find everything about him.

Mladen Bestvina Wiki, Biography

Date of Birth 1 December 1959
Birth Day 17 September
Birth Years 1959
Age 61 years old
Birth Place Osijek
Birth City
Birth Country United States of America
Nationality Croatian
Famous As Mathematician
Also Known for Mathematician
Zodiac Sign Cancer
Occupation Mathematician

Famously known by the Family name Mladen Bestvina, is a great Mathematician. He was born on 1 December 1959, in Osijek. is a beautiful and populous city located in Osijek United States of America.

Read Also: Kosta Vangjeli Wiki, Biography, Age, Net Worth, Family, Instagram, Twitter, Social Profiles & More Facts

Mladen Bestvina Net Worth

Mladen Bestvina has a net worth of $5.00 million (Estimated) which he earned from his occupation as Mathematician. Popularly known as the Mathematician of United States of America. He is seen as one of the most successful Mathematician of all times. Mladen Bestvina Net Worth & Basic source of earning is being a successful Croatian Mathematician.

Mladen entered the career as Mathematician In his early life after completing his formal education..

Net Worth

Estimated Net Worth in 2022 $1 Million to $5 Million Approx
Previous Year’s Net Worth (2021) Being Updated
Salary in 2021 Not Available
Annual Salary Being Updated
Cars Info Not Available
Income Source Mathematician

Social Network

Born on 1 December 1959, the Mathematician Mladen Bestvina is arguably the world’s most influential social media star. Mladen is an ideal celebrity influencer. With his large number of social media fans, he often posts many personal photos and videos to interact with his huge fan base on social media platforms. Personal touch and engage with his followers. You can scroll down for information about his Social media profiles.

Social Media Profiles and Accounts

Twitter Not Available
Instagram Not Available
Facebook Not Available
Wikipedia Mladen Bestvina Wikipedia
YouTube Not Available
Spotify Not Available
Website Not Available
Itunes Not Available
Pandora Not Available
Googleplay Not Available
Deezer Not Available
Quora Not Available
Soundcloud Not Available

Life Story & Timeline


Bestvina and Feighn also gave the first published treatment of Rips’ theory of stable group actions on R-trees (the Rips machine) In particular their paper gives a proof of the Morgan–Shalen conjecture that a finitely generated group G admits a free isometric action on an R-tree if and only if G is a free product of surface groups, free groups and free abelian groups.


In 2012 he became a fellow of the American Mathematical Society.


Bestvina gave an invited address at the International Congress of Mathematicians in Beijing in 2002. He also gave a Unni Namboodiri Lecture in Geometry and Topology at the University of Chicago.


In a 1997 paper Bestvina and Brady developed a version of discrete Morse theory for cubical complexes and applied it to study homological finiteness properties of subgroups of right-angled Artin groups. In particular, they constructed an example of a group which provides a counter-example to either the Whitehead asphericity conjecture or to the Eilenberg−Ganea conjecture, thus showing that at least one of these conjectures must be false. Brady subsequently used their Morse theory technique to construct the first example of a finitely presented subgroup of a word-hyperbolic group that is not itself word-hyperbolic.


In a 1992 paper Bestvina and Feighn obtained a Combination Theorem for word-hyperbolic groups. The theorem provides a set of sufficient conditions for amalgamated free products and HNN extensions of word-hyperbolic groups to again be word-hyperbolic. The Bestvina–Feighn Combination Theorem became a standard tool in geometric group theory and has had many applications and generalizations (e.g.).

A 1992 paper of Bestvina and Handel introduced the notion of a train track map for representing elements of Out(Fn). In the same paper they introduced the notion of a relative train track and applied train track methods to solve the Scott conjecture which says that for every automorphism α of a finitely generated free group Fn the fixed subgroup of α is free of rank at most n. Since then train tracks became a standard tool in the study of algebraic, geometric and dynamical properties of automorphisms of free groups and of subgroups of Out(Fn). Examples of applications of train tracks include: a theorem of Brinkmann proving that for an automorphism α of Fn the mapping torus group of α is word-hyperbolic if and only if α has no periodic conjugacy classes; a theorem of Bridson and Groves that for every automorphism α of Fn the mapping torus group of α satisfies a quadratic isoperimetric inequality; a proof of algorithmic solvability of the conjugacy problem for free-by-cyclic groups; and others.


A 1988 monograph of Bestvina gave an abstract topological characterization of universal Menger compacta in all dimensions; previously only the cases of dimension 0 and 1 were well understood. John Walsh wrote in a review of Bestvina’s monograph: ‘This work, which formed the author’s Ph.D. thesis at the University of Tennessee, represents a monumental step forward, having moved the status of the topological structure of higher-dimensional Menger compacta from one of “close to total ignorance” to one of “complete understanding”.’


Mladen Bestvina is a three-time medalist at the International Mathematical Olympiad (two silver medals in 1976 and 1978 and a bronze medal in 1977). He received a B. Sc. in 1982 from the University of Zagreb. He obtained a PhD in Mathematics in 1984 at the University of Tennessee under the direction of John Walsh. He was a visiting scholar at the Institute for Advanced Study in 1987-88 and again in 1990–91. Bestvina had been a faculty member at UCLA, and joined the faculty in the Department of Mathematics at the University of Utah in 1993. He was appointed a Distinguished Professor at the University of Utah in 2008. Bestvina received the Alfred P. Sloan Fellowship in 1988–89 and a Presidential Young Investigator Award in 1988–91.


Mladen Bestvina (born 1959) is a Croatian-American mathematician working in the area of geometric group theory. He is a Distinguished Professor in the Department of Mathematics at the University of Utah.